Affiliate Disclosure:
This document contains affiliate links. If you click an affiliate link, | may earn a commission. There is no additional cost to
you.

The SaaS Product Adoption &
Education Framework

Operational Templates for Reducing Friction and Scaling User Enablement

A. Feature-to-Walkthrough Prompt

Type: System Prompt / LLM Instruction Template
Usage: Copy and paste this prompt when you need to generate a script for a specific feature. Replace the bracketed input
data.

OPERATIONAL CONTEXT AND RATIONALE

The gap between a deployed feature and user adoption is often defined by the latency of instructional content. In
resource-constrained environments, the traditional cycle—waiting for a stable Ul, drafting a storyboard, seeking
marketing approval, and producing high-fidelity assets—causes documentation drift. By the time the asset is released,
the feature has often evolved, or the user has already encountered friction.

This asset, the Feature-to-Walkthrough Prompt, is designed to collapse the creation cycle by enforcing a rigid
"Problem -> Action -> Outcome" logic. This structure is not merely a stylistic choice; it is a mechanism to reduce
cognitive load. Users engaging with new features are typically in a state of high intrinsic load; they are trying to solve a
problem while simultaneously learning a new interface. Extraneous load—generated by marketing fluff, "exciting"
adjectives, or non-linear storytelling—competitively inhibits the processing of necessary technical information.

The prompt enforces a "builder-to-builder" tone. This ensures that the output is strictly functional. It treats the user not as
a consumer to be persuaded, but as an operator to be instructed. This aligns with the "Keep a Changelog" philosophy,
which emphasizes that logs and updates are for humans, not machines, but must remain distinct from marketing copy.
By standardizing the input (feature context) and the output (linear script), this tool allows product operators to generate

accurate, validated scripts in seconds, ensuring that help centers and release videos are synchronous with code
deployment.

Implementation reference (optional): For teams standardizing video-based walkthrough production, a commonly used
platform is https://www.synthesia.io/?via=Explore-Now.

Input Data / Input Variables (Provide All)

Feature Name: [Insert Name]
Technical Function: [Describe inputs, processing, and outputs]

User Permission Level: [Admin/Editor/Viewer]

Pre-conditions: [State required settings or prior datal

Raw Context:
User Role: [Admin / Editor / Viewer]
Interface Context:

Change Log Item: [Paste technical ticket or developer note]

Prompt Instructions (System Role + Objective)

System Role: You are a Technical Product Operator specializing in converting raw feature
specifications into linear, operational walkthrough scripts. You do not write marketing copy.
You do not tell stories. You map user inputs to system outputs.

Act as a Technical Writer for internal product documentation.

Objective: Transform a raw feature update (ticket, changelog, or brief) into a "Problem ->

Action —-> Outcome" script for video recording or documentation.

Convert the Input Data above into a step-by-step walkthrough script.

STRICT CONSTRAINTS (MUST BE ENFORCED)

Structure Enforcement (Problem -> Action -> Outcome)

» Problem: State the specific friction point or missing capability that triggered this
feature. Use the format: "Previously, users [encountered specific limitation]." This
grounds the user in the "Why" without selling.

* Action: List the exact literal clicks, keystrokes, or commands required. Do not
summarize. Use imperative verbs (e.g., "Click," "Select," "Type").

» Outcome: Describe the immediate system verification of the action. What changes
on screen? What data is returned? This provides the "feedback loop" necessary for
confidence.

Structure: Use a linear "Action -> Result" format.

Vocabulary: Use only literal navigational verbs (Click, Select, Type, Toggle, Drag).

https://www.synthesia.io/?via=Explore-Now

Prohibited:
» Do not use adjectives describing difficulty or quality (e.g., "easy,

"o

intuitive,

non non

seamless," "powerful").

nn non

» NO adjectives of quality (e.g., "seamless," "easy," "powerful," "exciting").

» NO future tense promises (e.g., "this will help you...").

* NO rhetorical questions.

* No Intros/Outros: Start immediately with the first action. End when the task is complete.

* NO "In this video..." or "Today we are going to show you..."

Visual Cues: Indicate Ul elements in brackets, e.g., [Save Button] .

* Bold interface elements (buttons, fields, menu items).
* Use code blocks for strings users must type.

OUTPUT FORMAT (REQUIRED)

* Prerequisites: Bulleted list of states required before starting.

+ Step-by-Step Script: Numbered list.

» Format: "Navigate to [Page]. Click [Button]."

+ Validation: One sentence describing the visual confirmation of success.

FORMATTING (ADDITIONAL REQUIRED FORMAT FROM RESEARCH 2)

» Use Markdown tables for step-by-step actions.
* Use code blocks for strings users must type.

Contextual Logic Library (Scenario Dictionary)

Use the following translation matrix to interpret raw developer inputs into operational script language.

Feature Type Developer Input Example Operational Script Translation Pattern

Ul State "Moved toggle to modal” Action: Navigate to [Page]. Click. The modal appears.
Change Outcome: The is visible in the top-right corner.
Data Validation "Added regex check for Action: Enter an invalid email format (e.g., "name@domain").
email" Outcome: The system displays the error message: "."
Performance "Reduced query latency by Action: Load the.
50ms" Outcome: The table data populates immediately. (Note: Do not quantify

speed unless visible).

Permissions "RBAC update for Read- Action: Log in as. Navigate to.
Only" Outcome: The button is greyed out/disabled.
Deprecation "Removed legacy export" Problem: The CSV export button in the sidebar is no longer supported.

Action: Navigate to the.

Integration "Webhook payload Action: Trigger the [Event]. Check the payload log.
expansion” Outcome: The JSON object now includes the [new_field] key.

Feature Type Developer Input Example Operational Script Translation Pattern

Bulk Action "Batch delete added" Action: Select multiple rows using the checkboxes. Click.
Outcome: A confirmation dialog appears showing "[Number] items
selected.”

Output Generator (Copy and Fill)

Walkthrough Script: [Feature Name]
Context (Problem State)
Trigger:

Scope: Affects in [Interface Context].

Execution Flow (Action —> Outcome)

Step | User Action (Literal) | System Outcome (Visual Verification)

Navigate to [Menu Item] > ****, | The **** yiew loads.

Locate the [Component Name] panel. \ is visible.

[Action from Logic Library]. | [Outcome from Logic Library].
Click ***x*, | System displays toast notification: "[Message]".

Refresh the page. The status column updates to ****,

EDGE CASE NOTES (IF APPLICABLE)

« If [Condition X] exists, ensure is skipped.
* Note: This feature is hidden for.

Component Analysis and Logic

THE "PROBLEM -> ACTION -> OUTCOME" FRAMEWORK

This framework is derived from task-based documentation standards and cognitive load theory.

* Problem: This aligns with the "Pre-training Principle" in instructional design. By
defining the limitation first, we prime the user's mental model for the solution. It
answers "Why am | here?" without using marketing language.

* Action: This utilizes "imperative mood" instruction. Instructions must be binary: did
the user perform the action or not? There is no room for interpretation.

» Outcome: This provides immediate "System Feedback." In software interaction,
users require confirmation that their input was registered. By explicitly scripting the
outcome (e.g., "The button turns green"), the operator ensures the video verifies the
success state.

NEGATIVE CONSTRAINTS (THE "NO FLUFF" RULE)

Excluding adjectives and sales framing is critical for "builder-to-builder" communication.

* Superlatives (e.g., "Seamless”, "Easy"): These are subjective. If a user struggles,
describing the process as "easy" induces frustration and dissonance.

* Future Tense (e.g., "This will allow..."): Users read documentation to act now.
Present tense ("This allows...") is actionable; future tense is speculative.

* Rhetorical Questions: These add conversational overhead (extraneous cognitive
load) without adding information.

THE CONTEXTUAL LOGIC LIBRARY

This matrix serves as a translation layer between "Dev-Speak" and "User-Speak." Developers communicate in terms of
implementation (e.g., "Added regex"), while operators must communicate in terms of verification (e.g., "Enter invalid
email").

» Data Validation: This is often invisible. The script must force an error state to make
the feature visible in a walkthrough.

» Performance: Speed is subjective. The script focuses on the absence of loading
spinners rather than claiming "lightning fast" speeds.

» Permissions: Security features are defined by what cannot be done. The script
instructs the operator to verify the disabled state.

IMPLEMENTATION GUIDE: HANDLING COMMON SCENARIOS

Scenario A: The Backend Update (Invisible Feature)
Challenge: A feature like "Improved API rate limiting" has no Ul. Operational Solution: The prompt directs the user to the
Outcome in the logs or error messages.

Input: "Rate limit increased to 100 reg/min."

Script Output:
Action: Send 101 requests via Postman.
Outcome: Request 101 returns 429 Too Many Requests.

Video Strategy: Record the terminal/API client, not the main UI.

Scenario B: The Ul Overhaul (Visual Volatility)
Challenge: A feature moves a button from the left sidebar to the top nav. Operational Solution: The prompt focuses on
the new path.

Input: "Nav refactor."
Script Output:

Problem: The sidebar navigation has been deprecated to increase canvas space.

Action: Click the [Hamburger Menu] in the top-left.

Outcome: The navigation drawer slides out.

Scenario C: Complex Multi-User Workflows
Challenge: A feature requires Action A by an Admin and Action B by a User. Operational Solution: The prompt generates
two distinct sequences.

Script Output:
Phase 1 (Admin): Enable setting. Outcome: Toggle is green.

Phase 2 (User): Refresh page. Outcome: New feature is visible.

Video Strategy: Use a "Split Screen" or "Persona Swap" title card between phases.

TROUBLESHOOTING THE PROMPT

* Issue: The output is too technical.
Cause: The "Raw Context" input was likely a direct paste of a complex Git commit
message.
Fix: Pre-process the input. Instead of pasting the full code diff, paste the User Story
from the ticket.

* Issue: The output lacks flow.
Cause: The steps are too granular (e.g., "Move mouse to X", "Click X").
Fix: Group actions. Modify the prompt instructions to "Group related clicks into a
single step if they occur in the same modal."

* Issue: The output contains marketing language.
Cause: The "Negative Constraints" were ignored or the LLM reverted to default
"helpful assistant" mode.
Fix: Re-run with the instruction: "Rewrite with extreme dryness. Remove all
adjectives."

B. Modular Onboarding Sequence Template

Type: Content Architecture Framework
Usage: Use this structure to organize video/doc files. Isolate volatile Ul components from stable conceptual components to
minimize update debt.

OPERATIONAL CONTEXT AND RATIONALE

Monolithic onboarding videos (e.g., "The 20-minute Full Platform Tour") are operational liabilities. In a fast-shipping SaaS
environment, a single Ul change—such as moving a "Settings" button—renders the entire 20-minute asset obsolete.
This leads to a binary choice: leave inaccurate content live (eroding trust) or re-record the entire video (burning
resources).

This Modular Onboarding Sequence Template solves this by applying "Object-Oriented Content Design" principles.
By treating content as discrete, interchangeable blocks , operators can swap out a 30-second "Action Block" without
touching the "Intro" or "Concept" blocks. This dramatically reduces the "Blast Radius" of a product update.

The architecture mimics software engineering:

* Abstraction: Separating the concept (stable) from the interface (volatile).

» Encapsulation: Containing Ul-specific instructions in isolated blocks.

* Dependency Management: Explicitly listing prerequisites to allow for dynamic
playlist generation.

This approach prioritizes Clarity and Maintainability over cinematic flow. Users in B2B SaaS prefer accurate, searchable,
and granular answers over high-production narratives.

ARCHITECTURE RULES

» Atomicity: Each module must be under 90 seconds.
» Dependency: Modules must be referenced by ID, not title, to allow title updates
without link breaking.

Stability Tagging:
[STABLE] = Concepts, strategic "why," API logic. (Review every 6 months).
[VOLATILE] = Ul navigation, specific button placements, dashboard layouts. (Review every release).

SEQUENCE STRUCTURE:

* Module 01: The Logic Model [STABLE]
Content: Explains the data object hierarchy or calculation logic. No Ul shown.
Visuals: Diagrams, Schematics, Flowcharts.
Trigger for Update: Fundamental change in data model only.
* Module 02: Configuration & Inputs [VOLATILE]
Content: Where to click to enable the feature. Input field definitions.
Visuals: Screen capture of Settings/Input forms.
Trigger for Update: Ul redesign, new field added, menu move.
* Module 03: Execution Workflow [VOLATILE]
Content: The active task. (e.g., "Running the report," "Sending the campaign").
Visuals: Screen capture of the main workspace.
Trigger for Update: Workflow steps change.
* Module 04: Output Interpretation [STABLE]
Content: How to read the results, logs, or analytics.
Visuals: Static screenshots of example outputs (annotated).
Trigger for Update: New metrics added or removal of data points.

The Asset: Modular Onboarding Sequence Template

Purpose: Allow onboarding content to change in parts without rebuilding everything.

. STRUCTURAL HIERARCHY

Level 1: The Container (The "Course")

Definition: The linear sequence assigned to a user role.
Maintenance Frequency: Low (Quarterly).

Composition: An ordered list of Level 2 Modules.

Example: "Admin Onboarding v3" (Contains Modules A, B, C).

Level 2: The Module (The "Topic")

Definition: A discrete functional outcome (e.g., "Inviting a User," "Configuring API Keys").
Maintenance Frequency: Medium (Monthly/Per Release).

Composition: 1 Intro Block + 1-3 Action Blocks + 1 Verification Block.

Constraint: Max length 4 minutes / 600 words.

Level 3: The Block (The "Atom")

Definition: The smallest unit of instruction (e.g., "The Login Screen," "The Dashboard Widget").
Maintenance Frequency: High (Weekly/Dalily).

Versioning: Individually tagged.

Nature: Highly Volatile (contains Ul specifics).

Il. NAMING & VERSIONING CONVENTION

Use the following schema to tag assets in your CMS/LMS to ensure rapid retrieval and replacement.

Asset Naming Pattern Version Rule

Level

Container ROLE_FLOW_v{Major} ADMIN_ONBOARD_v2 Increment on full restructure.

Module MOD_{Func}{ID}v{Major}. MOD_USER_INVITE_v1.4 Increment Minor on text tweaks; Major
{Minor} on Ul overhaul.

Block BLK{UI_Element}{ID}_{State} BLK_SIDEBAR_NAV_EXPANDED New ID for every Ul change.

lll. THE MODULAR TEMPLATE

Copy the markdown below to structure every onboarding module.

Module ID:
Status:

Last Verified: by [Operator Name]

Module Boundary (Meta-Data)
Prerequisites:
User Role:

Software Version: [Min. App Version]

Volatility Score: [High/Low] (High = UI changes frequently; keep text generic)

Intro Block (Stable)

Purpose: State the Job-to-be-Done (JTBD) .

Script Anchor: "In this module, you will configure [Feature] to achieve [Outcome]."

Visual Asset: OR

Restriction: Do NOT show specific UI screens here. This ensures the intro remains wvalid even

if the UI changes.

Action Block A (Volatile - The "Happy Path")

Input Trigger:

Step Sequence:

Action: [Literal Instruction] -> Visual:

Action: [Literal Instruction] -> Visual:

Action: [Literal Instruction] -> Visual:

Audio/Text Rule: Refer to elements by function ("The Save Button"), not just position

("Bottom right"), to extend asset life if buttons move slightly.

Action Block B (Volatile - The "Configuration")

Optional: Only include if configuration is distinct from the main action.

Step Sequence:
Action: [Literal Instruction] -> Visual:

Action: [Literal Instruction] -> Visual:

Verification Block (Stable)
Purpose: Confirm success state.
"

Script Anchor: "When complete, will display [Indicator].

Visual Asset:

IV. COMPONENT LIBRARY (STANDARDIZED BLOCKS)

Use these pre-defined block structures for common SaaS patterns to avoid rewriting standard procedures.

Block Type: Authentication (SSO/Login)

Volatility: Low

Standard Script: "Enter your credentials provided by your administrator. If Single Sign-On is enabled, select your identity
provider."

Visual Requirement: Blur the email/password fields in recording.

Block Type: Data Table Management

Volatility: Medium (Column headers change)

Standard Script: "Use the filter bar to narrow results. Columns can be sorted by clicking the header. Actions for individual
rows are located in the ellipsis menu."

Maintenance Note: If a new column is added, update only the visual asset; the script often remains valid.

Block Type: APl Key Generation

Volatility: High (Security Ul changes often)

Standard Script: "Navigate to Settings, then API Access. Generate a new token. Copy this token immediately; it will not
be shown again."

Visual Requirement: NEVER record a real production key. Use a test environment key or obscure the string in post-
production.

V. UPDATE LOGIC (THE "REWORK KILLER")

When a product update releases, execute this logic to determine minimum viable update work:

Analyze the Changelog: Does the change affect the Concept or the Click-path?

» Concept Change:
Action: Rewrite "Intro Block" and "Verification Block."
Effort: High (Requires new conceptual framing).
* Click-path Change (Button moved, Color changed):
Action: Replace "Visual Asset" in Action Block A/B. Keep "Intro Block" and audio

track if possible.
Effort: Low (Reshoot screen only).
* Field Change (New input required):
Action: Record discrete insert clip for the new field. Splice into Action Block.
Effort: Medium.

Component Analysis and Logic

THE "BLOCK" ARCHITECTURE

The "Block" is the atomic unit. By enforcing a distinction between Intro Blocks (Stable) and Action Blocks (Volatile), we

optimize for reuse.

+ Stable Content: Concepts, "Why" explanations, and JTBD statements rarely
change. A video intro stating "API keys allow secure communication between
servers" remains true regardless of where the "Generate Key" button is located.

+ Volatile Content: Ul specifics. By isolating these into "Action Blocks," we can
surgically replace 15 seconds of video without re-recording the voiceover for the
concept.

NAMING & VERSIONING

Adopting a "SemVer" (Semantic Versioning) approach for content prevents version conflict.

 Container v2: Represents a major curriculum overhaul.
* Module v1.4: Represents a minor tweak (e.g., text clarification) that doesn't break

the container.

* Block IDs: Using unique IDs allows for programmatic retrieval. If an LMS supports
dynamic playlists, you can reference BLK_LOGIN_LATEST to always pull the newest
login screen recording.

VOLATILITY SCORING

This is a risk management tool.

* High Volatility: Areas of the product actively under development (e.g., "Beta
Features"). For these, the template advises keeping voiceovers extremely generic
(e.g., "Configure the settings as shown on screen") so the audio doesn't need re-
recording when the visual changes.

» Low Volatility: Mature features (e.g., "Logout"). These can have higher production
value and specific voiceovers.

IMPLEMENTATION GUIDE: BUILDING FOR SCALE

Strategy for "Greenfield" Implementation
If starting from scratch:

1. Audit: List all 20 core user tasks.

2. Factor: Identify shared blocks (e.g., 15 tasks require "Login").
3. Record: Produce the "Shared Blocks" first (Login, Navigation).
4. Assemble: Build unique "Action Blocks" for specific tasks.

5. Compile: Stitch blocks into Modules.

Strategy for "Brownfield" Implementation (Refactoring)
If dealing with a library of monolithic videos:

1. Slice: Take existing long videos and cut them at the conceptual boundaries (between
"Why" and "How").
2. Tag: Apply the naming convention to these slices.

3. Replace: When a feature updates, only re-record the specific slice (Block) that
broke.

ADVANCED SCENARIOS

Scenario: The "White-Label" Product

Challenge: You ship the same software to 5 different enterprise clients with different branding colors. Solution:

*» Keep Intro Blocks generic (no Ul shown).
» Record Action Blocks on a "Neutral" theme (grayscale).
* Use the Clarity-over-Charisma Guide to enforce tight cropping (Zoom: 200%). By

cropping tight on the functionality, you often exclude the branded headers/sidebars,
making the video reusable across clients.

Scenario: The "Rapid lteration"” Beta
Challenge: A feature changes Ul every week. Solution:

» Use Text-to-Speech (TTS) for the audio track in the Action Block.

 Use the template's Volatility Score: High.

* This allows you to regenerate the audio instantly by typing new text, rather than
booking a voice actor or setting up a mic.

C. Release Update Script Prompt

Type: Change Communication Template
Usage: Use to generate patch notes or update video scripts.

OPERATIONAL CONTEXT AND RATIONALE

Release notes often suffer from a low signal-to-noise ratio. Marketing teams want to "spin" every bug fix as a "platform
enhancement," while developers want to dump raw Git commit logs. Neither serves the user. The user's primary
question is: "Does this break my workflow, or does it make it better?"

This Release Update Script Prompt is designed to act as a filter. It ingests raw technical data and outputs a prioritized,
utility-focused script. It draws on "Keep a Changelog" principles —sorting by importance, clearly labeling breaking
changes, and adhering to strict date/versioning standards.

The prompt enforces a "No Fluff" policy. Emotional framing ("We are thrilled to announce...") is explicitly banned. In
builder-to-builder communication, "thrilled" is noise; "latency reduced by 20%" is signal. The goal is to respect the user's
limited time and allow them to parse the update for relevance within seconds.

Input Data (Provide All)

Version Number:

Release Date:

Raw Changelog Items: [List of items]

Change Log Item: [Paste technical ticket or developer note]
Impacted User Segment: [Who sees this?]

Deprecations: [What was removed?]

Prompt Instructions (System Role + Objective)

System Role: You are a Release Communications Oficer. Your goal is to inform, not sell. You
strip away marketing fluff to deliver raw utility to existing users.

Prompt Instructions: Draft a Release Update notification based on the input data.

Objective: Convert a list of technical changes into a categorized, user-centric release

script.

TONE RULES (STRICT)

* Neutrality: No celebratory language (avoid "excited," "thrilled," "finally").
* No fluff: Do not apologize. Do not "excite." Just inform.

* Brevity: Maximum 3 sentences per change.

« Justification: Do not explain why we built it, only what it does.

* No emotional framing.

* No justification or celebration.

* This is informational, not promotional.

FILTERING & CATEGORIZATION LOGIC

Apply the following taxonomy to the raw input. If an item is "Internal/Chore," discard it unless it creates a visible
performance boost.

e New capability added. Direct: "You can now..."

[FIX] Bug resolved. Neutral: "Resolved an issue where..."
e Existing behavior changed. Advisory: "Note that X is now Y..."

o Feature removed/deprecated. Critical: "Action required: X is gone."
e Security update. Reassuring: "Security patches applied."

REQUIRED OUTPUT SECTIONS (MUST BE PRESENT)

The Change (Statement of Fact):
Constraint: Use the format: "The [Feature Name] now supports [Function]." or " The [Element] has moved to [Location]."

Operational Impact (The 'So What'):
Constraint: specific operational changes only. Example: "Reports will now take 30 seconds longer to generate due to
increased data granularity."

Required Action (Immediate Task):
Constraint: Binary instruction. Example: "No action required" or "Update API key by [Date]."

Script Generation Template

Headline: Release [Version] -

Section 1: The "Must Know" (Breaking Changes & Deprecations)
Trigger: Any **** or **** tags.
Script Structure: "Attention: The [0ld Feature] has been replaced by [New Feature]. You

must [Action] by to avoid disruption."

Section 2: New Capabilities (The "What")
Trigger: **** tags.

Script Structure: "We added [Feature Name].
Where: Find it in [Menu Location].

Why: Use this to.

How: [l-sentence instruction]."

Section 3: Fixes & Polish (The "details")
Trigger: [FIX] and **** tags.
Script Structure: "This release also resolves [Issue A] and. Full patch notes are available

in the text below."

Section 4: Call to Verification

Script Structure: "This update is live. Please verify your settings."

Translation Matrix (Tech-to-User)

Use this table to rewrite developer jargon into operator instructions.

Developer Jargon Release Script Language

"Refactored backend for latency reduction” "Reports now load faster."

"Implemented OAuth2.0 endpoints" "You can now log in with Google/Microsoft."

"Fixed race condition in cart" "Resolved an error when adding multiple items quickly."
"Deprecating vi API" "The v1 API will stop working on. Switch to v2."

"Nuked the legacy sidebar" "The sidebar has been updated to the new layout."
"Bumped dependency versions" (Do not include in script unless security critical)
"Sanitized input fields" "Improved security on form submissions."

EXECUTION INSTRUCTIONS

* Paste the Raw Changelog.

* Apply Filtering Logic (Discard chores).

» Map remaining items to Script Generation Template.
 Apply Translation Matrix to specific terms.

+ Output the final bulleted script.

Component Analysis and Logic

THE FILTERING LOGIC (TRIAGE)

The prompt forces a triage of information based on user impact, not developer effort.

« ** (Deprecation):** This is prioritized above all else (Section 1). Losing functionality
is a "critical incident” for a user's workflow. The script must warn before it informs.

» ** (New Features):** Placed second. While "exciting," they are optional. The user
can ignore them and still do their job.

* [FIX] (Bug Fixes): Placed third. Unless the bug was blocking a critical workflow,
users generally expect software to work. Celebrating bug fixes too loudly can imply
the software was previously broken.

THE TONE MATRIX
This enforces "Neutrality."

* Developer: "Nuked the legacy sidebar." (Aggressive, internal slang).
» Marketing: "Experience our stunning new navigation!" (Hype, vague).

* Operator (Target): "The sidebar has been updated to the new layout." (Factual,
locates the change).

BREAKING CHANGES VS. DEPRECATIONS

The prompt distinguishes between immediate breaks and future breaks.

* Breaking Change: "The API response format has changed." -> Script: "Update your
integrations immediately."
* Deprecation: "The old API will work for 3 months." -> Script: "Plan your migration by."

IMPLEMENTATION GUIDE: DISTRIBUTION CHANNELS

The "Video" Script

When using this prompt for a Loom/Video update:

Visuals: Section 1 (Must Know) requires a static slide with large text (e.g., "DEADLINE: JUNE 30"). Section 2 (New
Capabilities) requires screen recording.

Pacing: Read the bullet points with 0.5s pauses between items.

The "In-App" Modal

When using this prompt for an in-app changelog (e.g., Beamer, Headway):

Links: The "How" section of the script should link directly to the Modular Onboarding asset (Asset B) for that feature.
Formatting: Use the Markdown headers provided in the template.

The "Email" Blast

Subject Line: Use the "Headline" generated by the prompt.

Body: Paste Section 1 and Section 2. Omit Section 3 (Fixes) and link to the full changelog instead to keep the email
concise.

TROUBLESHOOTING THE PROMPT

* Issue: The script is too long.
Cause: Too many [FIX] items included.
Fix: Modify the input instructions to "Group all minor Ul fixes into a single bullet
point: 'Various Ul polish and minor bug fixes"."

* Issue: The "Why" is missing.
Cause: Developer notes often say "Added X" without explaining the use case.
Fix: The operator must inject the "Why" based on the ticket. The prompt asks for
"Solve Specific Problem" — if this is missing from the input, the prompt should flag it

as a missing variable.

D. Clarity-over-Charisma Guide

Type: Production Standard
Usage: Reference sheet for video editors and creators.
Purpose: Prevent uncanny valley and overproduction in product videos. Must keep videos usable, not impressive.

OPERATIONAL CONTEXT AND RATIONALE

There is a dangerous trend in SaaS product education: the "Uncanny Valley" of over-production. High-fidelity, marketing-
style videos with upbeat music, fast cuts, and enthusiastic voiceovers often alienate technical users. They increase
"Extraneous Cognitive Load" —the user has to expend mental energy filtering out the "vibe" to find the "instruction.”

Furthermore, highly polished videos are brittle. If a video relies on complex after-effects, color grading, and a specific
voice actor, updating it requires a full production crew. This leads to outdated content.

This Clarity-over-Charisma Guide establishes a "Minimum Viable Quality" standard. It prioritizes Utility, Editability, and
Cognitive Efficiency. It sets strict limits on visual density and pacing to ensure that the content is accessible to all users
(including non-native speakers and those with accessibility needs) and easy for the product team to update.

PACING AND AUDIO

» Speech Rate: Maintain 130—150 words per minute. Faster increases cognitive load;
slower indicates marketing fluff.

» Pauses: Insert a 0.5-second silence between distinct actions. Insert a 1.0-second
silence between screen transitions.

« Silence: Do not fill dead air with background music. If music is mandatory, use a
repetitive, mid-tempo loop with no melody spikes, mixed at -25db relative to voice.

l. Cognitive Load & Pacing Standards

THE "140-160 WPM" RULE

« Standard: Voiceover pacing must fall between 140 and 160 Words Per Minute.
» Why: Slower than 140 feels condescending; faster than 160 degrades retention.
« Calculation: A 100-word script should take ~40 seconds.
* Silence is Syntax:
o Insert a 1.5-second pause after completing a complex action (e.g., submitting
a form) before speaking the next instruction.
o Insert a 0.5-second pause between sentences.

VISUAL DENSITY CAP

* Rule: Max 3 visual focal points per scene.

» Bad: Showing the entire dashboard while talking about one button.

» Good: Zooming/Cropping to show the button, the label, and the cursor.

* Signaling: Use explicit visual cues (bounding boxes, highlights) to guide the eye. Do
not rely on mouse movement alone.

THE "6-MINUTE" HARD LIMIT

 Constraint: No single video asset shall exceed 6 minutes.
» Data: Engagement drops 50% after minute 6.

« Action: If a script exceeds 800 words, split it into two modular assets (e.g., "Setup”
and "Advanced Configuration").

VISUAL DENSITY & SCREEN RECORDING

* Resolution: Record at 1080p minimum. Crop to the specific active window or div,
not the full desktop.

Il. Technical Configuration Reference (The "Look")

CANVAS & RESOLUTION

* Recording Resolution: 1920x1080 (1080p).

* Do NOT record in 4K: 4K downscaled to a laptop screen makes Ul text unreadable.

* Do NOT record ultrawide: Aspect ratio must be 16:9 standard.

* Ul Scaling: Set OS Display Scaling to 125% or 150% before recording. This
ensures button labels are legible on mobile devices/small embed windows.

MOUSE MOVEMENT:

* Disable mouse acceleration.
« Edit out "mouse wandering" (erratic movements while thinking).
* Cursor path must be linear: A to B.

CURSOR SPECIFICATIONS

» Size: Scale cursor to 200-250% of default size.
* Highlight: Apply a semi-transparent yellow/green halo (opacity 40%) around the
cursor.
* Behavior:
o Idle: Hide cursor when not performing an action.
o Motion: Use "smoothed" mouse pathing in post-production (e.g., Camtasia
"Cursor Smoothing" or ScreenFlow "Smooth"). Jittery mouse movement
indicates nervousness/amateur production.

Zooming: Do not pan/zoom continuously. Cut to the zoomed view instead of animating the zoom.
AUDIO ENGINEERING (THE "NO-HISS" STANDARD)

» Sample Rate: 44.1kHz or 48kHz (16-bit or 24-bit).
* Noise Floor: Must be below -60dB.
* Processing Chain:

o Noise Gate: Threshold -45dB (Cuts silence).

o Compressor: Ratio 3:1, Threshold -18dB (Evens out volume spikes).
o EQ: High-pass filter at 80Hz (Removes rumble).
» Tone: Monotone is acceptable; "Radio DJ" voice is forbidden. Prioritize enunciation
over energy.

SCRIPT CONSTRAINTS

» Sentence Length: Maximum 20 words per sentence.

* Active Voice: Always use [Subject] [Verb] [Object].
Bad: "The settings can be changed by clicking here."
Good: "Click Settings to change defaults."

* No Analogies: Do not use metaphors (e.g., "Think of this like a filing cabinet").
Describe the digital object literally (e.g., "This is the database directory").

lll. Screen Action Protocol

THE "PARK AND READ" METHOD

Never speak while moving the mouse.
Sequence:

1. Speak: "Click the Settings icon."
2. Move Mouse: Move cursor to icon.
3. Action: Click.

4. Pause: Wait for Ul update.

5. Speak: "Select the User tab."

ZOOM/PAN LOGIC

« Jump Cuts vs. Pans: Prefer Jump Cuts (instant zoom) over smooth pans. Smooth
pans induce motion sickness and waste seconds.
* Zoom Depth:
o Full Screen (100%): Establishing context (Start of video).
o Action Area (200%): Filling forms, reading lists.
o Detail View (400%): Checking checkboxes, reading error messages.

TEXT READABILITY (FLESCH-KINCAID)

» On-Screen Text (Callouts): Must score Grade 8 or lower.

* Sentence Length: Max 20 words per bullet point.

* Duration: Text must remain on screen long enough to be read twice (approx. 0.3
seconds per word).

IV. QA Checklist for Assets

Before shipping any asset, verify against this binary checklist:

Pacing Is WPM between 140-1607? [1
Legibility Is Ul text readable on a mobile screen (simulated)? [1
Cursor Is cursor smoothed and scaled? [1
Logic Does the visual strictly match the audio (Park and Read)? [1
Metadata Is the file named correctly (e.g., MOD_LOGIN_v2.mp4)? []
Cleanliness Are test accounts/sensitive data obscured? []
Silence Is there 0.5s silence at the absolute start and end? []

Component Analysis and Logic

THE PHYSICS OF ATTENTION (VISUAL DENSITY)

The "3 Focal Points" rule is derived from the "Spatial Contiguity Principle." When eyes have to scan a 4K screen to find a
16px button, learning stops.

Implementation: By scaling the OS Ul to 150%, we artificially lower the resolution, forcing elements to be larger relative
to the frame. This makes the video legible even when compressed into a small <iframe> on a Help Center article.

THE "PARK AND READ" PROTOCOL

This separates the visual channel from the auditory channel.

» Synchronous Presentation: If you move the mouse while talking, the user splits
attention between tracking the motion and decoding the speech.

» Asynchronous Presentation (Park and Read):
Audio: "Click Settings." (Auditory Channel Active).
Visual: Mouse moves. (Visual Channel Active).
This toggling ensures 100% of cognitive resources are available for each distinct
input.

AUDIO ENGINEERING AS UTILITY
The "Radio DJ" voice is discouraged because it adds personality, which is a "brand" element.

 Builder Tone: The voice should sound like a competent colleague sitting next to
you. It should be flat, clear, and paced.

* Technical Spec: The noise gate and compression settings ensure that even if
recorded in a less-than-perfect room, the audio sounds "tight" and professional
without requiring a studio.

IMPLEMENTATION GUIDE: THE "GOOD ENOUGH" STUDIO

Hardware:

» Any USB Dynamic Microphone (e.g., ATR2100x, Samson Q2U). Avoid condenser
mics in untreated rooms.
« Standard Laptop Webcam (for intros only).

Software:

 Screen Recording: OBS (Open Broadcaster Software) for raw capture.
« Editing: Descript (for text-based audio editing) or Camtasia (for cursor effects).

Al Alternative: If you prefer to skip the recording studio entirely, you can use Al video generation platforms. Review Synthesia
here: https://www.synthesia.io/?via=Explore-Now

Workflow:

1. Scripting: Use Asset A.

2. Audio: Record the voiceover first. This sets the timing.

3. Video: Record the screen actions while listening to the voiceover (or match them in
post).

4. Assembly: Import to editor. Apply "Cursor Smoothing." Add "Zoom/Pan" cuts. Export.

ACCESSIBILITY AND INCLUSIVITY

Color Blindness:
Do not rely on color alone (e.g., "Click the red button"). Say "Click the Delete button."
Ensure high contrast for text overlays (White text on Black background).

Captions:
All videos must have "burned-in" captions or a synchronized .srt file.
Captions must match the script exactly (verbatim), as technical instructions cannot be paraphrased without risk of error.

Localization Readiness:
By keeping the voiceover separate from the screen recording (Park and Read), you can easily dub the audio into other
languages without re-recording the screen, provided the Ul is recognizable.

Affiliate Disclosure:
This document contains affiliate links. If you click an affiliate link, | may earn a commission. There is no additional cost to
you.

https://www.synthesia.io/?via=Explore-Now

	A. Feature-to-Walkthrough Prompt
	OPERATIONAL CONTEXT AND RATIONALE
	Input Data / Input Variables (Provide All)
	Prompt Instructions (System Role + Objective)
	STRICT CONSTRAINTS (MUST BE ENFORCED)
	OUTPUT FORMAT (REQUIRED)
	FORMATTING (ADDITIONAL REQUIRED FORMAT FROM RESEARCH 2)

	Contextual Logic Library (Scenario Dictionary)
	Output Generator (Copy and Fill)
	EDGE CASE NOTES (IF APPLICABLE)

	Component Analysis and Logic
	THE "PROBLEM -> ACTION -> OUTCOME" FRAMEWORK
	NEGATIVE CONSTRAINTS (THE "NO FLUFF" RULE)
	THE CONTEXTUAL LOGIC LIBRARY
	IMPLEMENTATION GUIDE: HANDLING COMMON SCENARIOS
	TROUBLESHOOTING THE PROMPT

	B. Modular Onboarding Sequence Template
	OPERATIONAL CONTEXT AND RATIONALE
	ARCHITECTURE RULES
	SEQUENCE STRUCTURE:
	The Asset: Modular Onboarding Sequence Template
	I. STRUCTURAL HIERARCHY
	II. NAMING & VERSIONING CONVENTION
	III. THE MODULAR TEMPLATE
	IV. COMPONENT LIBRARY (STANDARDIZED BLOCKS)
	V. UPDATE LOGIC (THE "REWORK KILLER")

	Component Analysis and Logic
	THE "BLOCK" ARCHITECTURE
	NAMING & VERSIONING
	VOLATILITY SCORING
	IMPLEMENTATION GUIDE: BUILDING FOR SCALE
	ADVANCED SCENARIOS

	C. Release Update Script Prompt
	OPERATIONAL CONTEXT AND RATIONALE
	Input Data (Provide All)
	Prompt Instructions (System Role + Objective)
	TONE RULES (STRICT)
	FILTERING & CATEGORIZATION LOGIC
	REQUIRED OUTPUT SECTIONS (MUST BE PRESENT)

	Script Generation Template
	Translation Matrix (Tech-to-User)
	EXECUTION INSTRUCTIONS

	Component Analysis and Logic
	THE FILTERING LOGIC (TRIAGE)
	THE TONE MATRIX
	BREAKING CHANGES VS. DEPRECATIONS
	IMPLEMENTATION GUIDE: DISTRIBUTION CHANNELS
	TROUBLESHOOTING THE PROMPT

	D. Clarity-over-Charisma Guide
	OPERATIONAL CONTEXT AND RATIONALE
	PACING AND AUDIO
	I. Cognitive Load & Pacing Standards
	THE "140-160 WPM" RULE
	VISUAL DENSITY CAP
	THE "6-MINUTE" HARD LIMIT
	VISUAL DENSITY & SCREEN RECORDING

	II. Technical Configuration Reference (The "Look")
	CANVAS & RESOLUTION
	MOUSE MOVEMENT:
	CURSOR SPECIFICATIONS
	AUDIO ENGINEERING (THE "NO-HISS" STANDARD)
	SCRIPT CONSTRAINTS

	III. Screen Action Protocol
	THE "PARK AND READ" METHOD
	ZOOM/PAN LOGIC
	TEXT READABILITY (FLESCH-KINCAID)

	IV. QA Checklist for Assets
	Component Analysis and Logic
	THE PHYSICS OF ATTENTION (VISUAL DENSITY)
	THE "PARK AND READ" PROTOCOL
	AUDIO ENGINEERING AS UTILITY
	IMPLEMENTATION GUIDE: THE "GOOD ENOUGH" STUDIO
	ACCESSIBILITY AND INCLUSIVITY

